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Deep-Space Optical Transceiver Uplink Detection
Analysis

Andre Tkacenko∗, Kevin J. Quirk∗, and Meera Srinivasan∗

In this article, we develop and analyze an uplink signal detection technique for the

Deep-Space Optical Transceiver (DOT). Here, the detection is carried out using a set of

test statistics obtained from up-down counter (UDC) photon detection systems.

Specifically, we address two sets of statistics: the count outputs from a bank of uniformly

temporally spaced UDCs as well as the counts from a single UDC that cycles through

multiple uniformly spaced timing phases. From these test statistics, we derive the

Neyman-Pearson decision rule under certain input conditions and analyze the performance

of this hypothesis test. We show the performance trade-offs associated with both sets of

test statistics, which can then be used to determine which set to use as well as the number

of UDCs or timing phases required for implementation.

I. Introduction

In order to receive an uplink communication from an Earth-based beacon, the Deep-Space

Optical Transceiver (DOT) flight terminal will use a focal plane array [1] of photon

counting detector pixels (possibly of size 128× 128). While the Earth and beacon together

will occupy a varying amount of pixels depending upon the distance between the DOT and

Earth, the system is designed for the beacon to occupy a certain minimum region of pixels

(possibly 2× 2). This is illustrated in Figure 1.

For spatial acquisition, the DOT flight terminal will employ up-down counter (UDC)

photon detection systems at each pixel. Using UDCs provides a low complexity detection

method when combined with appropriate modulation to be able to distinguish between

uplink telemetry from the beacon on Earth and background illumination from the Earth

as well as ambient background illumination. When a telemetry waveform is incident on a
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Figure 1. DOT focal plane array with Earth and the uplink beacon present.

pixel, the UDCs will tend to yield a non-zero output, whereas when only background

illumination is received, the UDCs will have a zero net count on average. As the symbol

timing offset of the uplink beacon telemetry waveform will not be known to the DOT a

priori, UDC count statistics at several timing phases will be required in general. Two ways

in which this can be accommodated and which we will analyze here are as follows. Either

a bank of uniformly temporally spaced UDCs can be used or a single UDC can be used

multiple times at uniformly spaced timing phases. For either case, the temporal spacing is

with respect to the uplink symbol interval, which is assumed to be known at the DOT.

A. Outline

In Section I-B, we describe the notations that will be used in this article, whereas in

Section I-C, we provide a convenient list of terms that will be used throughout the article.

An overview of the uplink detection signal model that we will be focusing on here is

provided in Section II. In Section III, we detail the UDC test statistics that will be

considered here and introduce the chip interval counts used to canonically describe them.

The probabilistic modeling of the chip interval counts is derived in Section III-A, which is

then used to determine the probabilistic modeling of the multiple UDC, single phase and

single UDC, multiple phase statistics in Sections III-B and III-C, respectively. A

description of the Neyman-Pearson hypothesis test that will be used for detection is given

in Section IV, along with a symbol timing offset conditional variant as detailed in Section

IV-A. In Section V, we analyze several important special cases of the unconditional

Neyman-Pearson hypothesis test, including the single UDC, single phase case in Section

V-A, the dual UDC, single phase case in Section V-B, and the single UDC, dual phase

case in Section V-C. There, we see the difficulties in deriving the unconditional

Neyman-Pearson hypothesis test in general and shift our focus to detection tests

conditioned on the symbol timing offset. Specifically, in Section VI, we analyze the

detection performance for a worst case scenario (WCS) symbol timing offset for both the

multiple UDC, single phase system in Section VI-A as well as the single UDC, multiple

phase system in Section VI-B. In Section VII, we touch on some of the pros and cons

between the two proposed UDC-based uplink signal detection schemes. Concluding

remarks are made in Section VIII. Finally, in the Appendix, we simplify a certain

multivariate Gaussian distribution [2] integral over a hyperspherical region, a result which
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is used to assess the WCS symbol timing offset detection performance.

B. Notations

Most notations are as in [2]. In particular, parentheses and subscripts are respectively used

to denote continuous and discrete function arguments. For example, g(x) would denote a

continuous function for x ∈ R, whereas hn would denote a discrete function for n ∈ Z.

Vector/matrix notations are as in [3]. Specifically, boldface lowercase letters (such as v) are

used to denote vectors, whereas boldface uppercase letters (such as A) represent matrices.

The k-th component of a vector v will be denoted [v]k, whereas the (k, `)-th element of a

matrix A is denoted as [A]k,`. In addition, the transpose operator will be represented by

the superscript T and the determinant of a square matrix S is expressed as det (S).

Random variables are denoted via a non-italicized font, while instances of random variables

are expressed using an italicized font. As an example, v may denote a random variable,

whereas an instance of v would be expressed as v. Vectors are denoted using a bold font.

For example, v may denote a random vector, while v would denote an instance of v.

A probability density function (pdf) [2] will be denoted by the letter f subscripted by the

random variable or vector. For instance, fv(v) and fv(v) would denote pdfs of the random

variable v and random vector v, respectively.

The notation N
(
µ, σ2

)
will be used to denote a random variable with a normal or

Gaussian distribution [2] with mean µ and variance σ2. If a random variable v has such a

distribution, we will write v ∼ N
(
µ, σ2

)
. We will use φ(x) and Φ(x) to respectively denote

the pdf and cumulative distribution function (cdf) [2] of the standard normal distribution

[2] (i.e., N (0, 1)). These are given by the following expressions [2]:

φ(x) ,
1√
2π
e−

x2

2 , Φ(x) ,
∫ x

−∞
φ(y) dy =

1√
2π

∫ x

−∞
e−

y2

2 dy .

It can be shown that if x ∼ N
(
µ, σ2

)
and fx(x) and Fx(x) denote, respectively, the pdf

and cdf of x, then we have [2]

fx(x) =
1

σ
φ

(
x− µ
σ

)
, Fx(x) = Φ

(
x− µ
σ

)
. (1)

Similar to the univariate case, the notation Np(µ,Σ) will be used to denote a p× 1

random vector with a multivariate normal or Gaussian distribution [2] with p× 1 mean

vector µ and p× p covariance matrix Σ. If a random vector v has such a distribution, we

will write v ∼ Np(µ,Σ). In this case, we have [2]

fv(v) =
1

(2π)
p
2 (det (Σ))

1
2

e−
1
2 (v−µ)TΣ−1(v−µ) . (2)

Finally, we will use the notation zNCχ2(x; p, λ) to denote the cdf of a noncentral

chi-square distribution with p degrees of freedom and non-centrality parameter λ evaluated
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at x [4]. In addition, we will use the notation z−1
NCχ2(P ; p, λ) to denote the quantile

function [2] (i.e., the inverse of the cdf) of a noncentral chi-square distribution with p

degrees of freedom and non-centrality parameter λ evaluated at P .

C. Summary of Terms

A list of frequently used terms is provided below for convenience.

M − pulse position modulation (PPM) [1, 5] data symbol order,

P − number of inter-symbol guard time (ISGT) [6] slots used,

G − number of UDCs in a multiple UDC, single phase system or the number of

timing phases of a single UDC, multiple phase system,

λs − average detected signal photon arrival rate,

λb − average detected background and dark [1] photon arrival rate,

Ts − slot time interval,

Ks − mean number of signal photon counts per signal slot (i.e., Ks , λs (M + P )Ts),

Kb − mean number of background photon counts per slot (i.e., Kb , λbTs),

Nsym − number of symbols observed for a multiple UDC, single phase system,

Nspp − number of symbols per timing phase observed for a single UDC, multiple

phase system,

Tsym − symbol time interval (i.e., Tsym , (M + P )Ts),

Td − detection time interval (i.e., Td = NsymTsym for a multiple UDC, single phase

system and Td = NsppGTsym for a single UDC, multiple phase system).

II. Uplink Detection Signal Model

The uplink signal model is characterized by a received photon intensity function, which we

denote here by i(t). From UDC test statistics based upon this received signal, we must

infer whether or not telemetry has been sent. For the DOT, we assume that a transmitted

telemetry signal will consist of symbols, each formed from the concatenation of the

following components:

• an M -ary PPM data symbol,

• a set of P ISGTs.

Whether or not a telemetry signal was transmitted, we will assume that there is a

background illumination present at the receiver. This leads to the following expression for
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Figure 2. Sample plot of the received photon intensity waveform i(t) when telemetry is present.

the received laser intensity waveform i(t):

i(t) =


λs (M + P )

[ ∞∑
n=−∞

p

(
t

Ts
− ε− dn − (M + P )n

)]
+ λb , telemetry present

λb , telemetry absent

,

(3)

where we have

ε , symbol timing offset (normalized by Ts),

In general, we have ε0 ≤ ε < ε0 + (M + P ) for any ε0 ∈ R.

{dn} , M -ary PPM data sequence,

Here, dn ∈ {0, 1, . . . ,M − 1}.

Also, we will assume that {dn} is an independent, identically distributed

(iid or i.i.d.) sequence [2] with

Pr {dn = m} =
1

M
, ∀ 0 ≤ m ≤M − 1, n ∈ Z .

p(x) , telemetry transmit pulse shape.

Here, we assume p(x) is rectangular as follows:

p(x) =

 1 , 0 ≤ x < 1

0 , otherwise
.

A sample plot of the received photon intensity signal i(t) in the case of telemetry being

present is shown in Figure 2. As only one of the M -ary PPM data slots will be active for

each composite symbol, consisting of (M + P ) slot intervals total, it follows that the

average signal arrival rate will be λs.

Another signal of interest which will simplify subsequent statistical analysis of the UDC

hypothesis test metrics will be the photon intensity function averaged over the random

PPM data. This signal, which we will denote by i(t), is given by the following expression:

i(t) = E{dn}[i(t)] =


λs

(M + P )

M

∞∑
n=−∞

p

(
t
Ts
− ε− (M + P )n

M

)
+ λb , telemetry present

λb , telemetry absent

.

(4)
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Figure 3. Sample plot of the data-averaged received photon intensity waveform i(t) with telemetry present.

A sample plot of the data-averaged received photon intensity function i(t) when telemetry

is present is shown in Figure 3. As can be seen, i(t) is similar to i(t) as shown in Figure 2,

except that the random data present in i(t) is averaged to produce the wide non-random

rectangular pulse present in i(t). The signal component of this wide pulse has an

amplitude which is M times smaller than that when random data is present, due to

averaging of the data.

It should be noted that i(t) cannot be directly observed in practice. However, as i(t) is

ergodic with respect to the data sequence {dn} [2], the set of UDC signal detection

statistics, which will include time averaged quantities, will be approximately the same

whether i(t) or i(t) is used to form the statistics (see Section III).

III. Up-Down Counter Test Statistics

As mentioned above, the uplink detection problem is to determine whether or not a

telemetry signal was transmitted. Thus, from Equation (3) we have two hypotheses as

described below:

H0 : i(t) = λb

H1 : i(t) = λs (M + P )

[ ∞∑
n=−∞

p

(
t

Ts
− ε− dn − (M + P )n

)]
+ λb

, (5)

where, H0 and H1 correspond, respectively, to the cases in which telemetry is absent and

present. We will refer to H0 as the null hypothesis, whereas H1 will be referred to as the

present hypothesis.

Here, a decision will be made as to whether H0 or H1 is true based on one of two possible

sets of G UDC statistics. For the multiple UDC, single phase case, the test statistics will

consist of the count outputs of a bank of G uniformly temporally staggered UDCs,

whereas for the single UDC, multiple phase case, the test statistics will consist of the

count outputs of a single UDC applied G times at uniformly spaced timing offset phases.

To formally introduce both sets of test statistics, let us first define the following chip time

interval Tc:

Tc ,
Tsym

2G
=

(M + P )Ts
2G

(chip time interval) . (6)
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Then, let us define the random variable Nk as follows:

Nk , # of photon counts over the time interval t ∈ [kTc, (k + 1)Tc) , ∀ k ∈ Z . (7)

From these count random variables, we form our G UDC test statistics for both the

multiple UDC, single phase and single UDC, multiple phase cases. Let Nsym and Nspp

denote, respectively, the number of symbols observed for the multiple UDC, single phase

case and the number of symbols per phase observed for the single UDC, multiple phase

case (see Section I-C). The UDC test statistics {g`}G−1
`=0 for the two cases are then

g` ,


1

Nsym

Nsym−1∑
q=0

(2G)−1∑
r=0

(−1)b
r−`
G cN(2G)q+r , (multiple UDC, single phase case)

1

Nspp

Nspp−1∑
q=0

(2G)−1∑
r=0

(−1)b
r−`
G cN(2G)(q+`Nspp)+r , (single UDC, multiple phase case)

.

(8)

A pictorial view of how the UDC statistics are formed in both cases is shown for G = 3 in

Figure 4. As can be seen from Figure 4(a), for the multiple UDC, single phase case, the

statistics overlap in time, whereas from Figure 4(b), for the single UDC, multiple phase

case, there is no temporal overlap of the test statistics. For both cases, however, it is

evident that the test statistics represent G time intervals uniformly offset across the total

symbol interval length Tsym.

A comment is in order here regarding the single UDC, multiple phase test statistics from

Equation (8). By construction, these statistics span contiguous, non-overlapping time

intervals. Specifically, from Equations (8), (7), and (6), it can be seen that g` represents

up-down photon counts over the time interval t ∈ [`NsppTsym, (`+ 1)NsppTsym), the set of

which, for all `, is contiguous and non-overlapping. However, as will be seen subsequently

in Section III-C, the probabilistic characterization of this set of test statistics will be the

same as those for which the time intervals are only non-overlapping. Hence, instead of the

contiguous and non-overlapping single UDC, multiple phase statistics from Equation (8),

we could also use a set of test statistics that are only non-overlapping. In essence, there is

no loss of generality in assuming a contiguous form as in Equation (8) and this was merely

chosen as such here for notational simplicity.

For notational convenience, we will define the G× 1 random vector g to be the vector of

UDC test statistics given by

g ,
[

g0 g1 · · · gG−1

]T
. (9)

In accordance with the notational conventions adopted here (see Section I-B), we will

denote an instance of g by g.

A. Probabilistic Modeling of the Chip Interval Counts

The photon detection counting process [1] is assumed to be a Poisson process [2]. Let λk

denote the average arrival rate [1] corresponding to the chip count variable Nk. From
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Figure 4. Pictorial view of the formation of the UDC test statistics for G = 3: (a) multiple UDC, single

phase case and (b) single UDC, multiple phase case (up counts in green and down counts in red).
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Equation (7), we have

λk ,
1

Tc

∫ (k+1)Tc

kTc

i(t) dt , (10)

where i(t) is as in Equation (3). Conditioned on λk, it follows that Nk is Poisson with

mean λkTc. Specifically, this means that we have [2]

Pr {Nk = m |λk} =
(λkTc)

m
e−(λkTc)

m!
um , m ∈ Z ,

where um is the Heaviside step sequence [2]. Furthermore, as Nk and N` represent counts

across non-overlapping time intervals for all k 6= ` (as evidenced from Equation (7)), it

follows that Nk |λk and N` |λ` are independent for all k 6= `.

When telemetry is present, the arrival rate λk is a deterministic function of the symbol

timing offset ε, when averaged over the random PPM data. For the case in which

telemetry is absent, it follows that λk = λb and so it is trivially a deterministic function of

ε. Thus, analogously to Equation (10), if we define the average arrival rate λk(ε) for both

the null and present hypotheses as

λk(ε) ,
1

Tc

∫ (k+1)Tc

kTc

i(t) dt , (11)

where i(t) is given by Equation (4), then we have

Nk | ε ∼ Poisson
(
λk(ε)Tc

)
. (12)

In other words, the random variable Nk | ε is Poisson with mean λk(ε)Tc. Furthermore, as

Nk and N` represent non-overlapping count time intervals for all k 6= `, it follows that

Nk | ε and N` | ε are independent for all k 6= `.

One noteworthy property of λk(ε) that can be deduced from Equations (11) and (4) is that

λk(ε) = λk mod (2G)(ε) , ∀ k ∈ Z . (13)

This follows from the fact that i(t) is periodic with period Tsym = (2G)Tc (for both

hypotheses) and that the integration region in Equation (11) is over an interval of length

Tc. This implies that there are at most (2G) distinct values of λk(ε) for fixed ε. As such,

from Equations (12) and (13), we have the following:

Nk | ε ∼ Poisson
(
λk mod (2G)(ε)Tc

)
. (14)

In other words, as k varies, the distribution of the count variable Nk, conditioned on the

symbol timing offset ε, is only a function of the remainder of k when divided by (2G).

B. Probabilistic Modeling of the Multiple UDC, Single Phase Statistics

To statistically characterize the multiple UDC, single phase test statistics from Equation

(8), note that we can express the normalized count random variable g` as

g` =

(2G)−1∑
r=0

(−1)b
r−`
G c Cr , where Cr ,

1

Nsym

Nsym−1∑
q=0

N(2G)q+r . (15)
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Now, to analyze the random variable Cr, first note that from Equation (14) that

N(2G)q+r | ε ∼ Poisson
(
λr(ε)Tc

)
.

In other words, for fixed r,
{

N(2G)q+r | ε
}Nsym−1

q=0
have identical distribution. Furthermore

as
{

N(2G)q+r | ε
}Nsym−1

q=0
are independent, it follows

{
N(2G)q+r | ε

}Nsym−1

q=0
are iid. As the

variance of N(2G)q+r | ε is equal to λr(ε)Tc (since N(2G)q+r | ε is Poisson with mean λr(ε)Tc

[2]), it follows by the central limit theorem [2] that for large Nsym, we have

Cr | ε ∼ N
(
λr(ε)Tc,

λr(ε)Tc
Nsym

)
. (16)

Furthermore, as Cr is formed from non-overlapping count random variables for varying r

as evident from Equation (15), it follows that Ck | ε and C` | ε are independent for all

k 6= `, where k, ` ∈ {0, 1, . . . , (2G)− 1}.

To further simplify the probabilistic model of the multiple UDC, single phase test

statistics, note that from Equation (15) that we have the following:

g` =

G−1∑
r=0

(−1)b
r−`
G c Cr +

(2G)−1∑
r=G

(−1)b
r−`
G c Cr ,

=

G−1∑
r=0

(−1)b
r−`
G c Cr +

G−1∑
m=0

(−1)b
m−`
G +1c CG+m , (17)

=

G−1∑
r=0

(−1)b
r−`
G c Cr −

G−1∑
r=0

(−1)b
r−`
G c CG+r =

G−1∑
r=0

(−1)b
r−`
G c (Cr − CG+r) , (18)

=

G−1∑
r=0

(−1)b
r−`
G cDr , where Dr , Cr − CG+r , 0 ≤ r ≤ G− 1 . (19)

Here, Equation (17) follows from the substitution m = r−G in the second summation and

Equation (18) follows from the fact that bx+ nc = bxc+ n for any n ∈ Z [7]. From

Equation (16) and the fact that Cr | ε and CG+r | ε are independent for all 0 ≤ r ≤ G− 1,

it can be shown that we have [2]

Dr | ε ∼ N

((
λr(ε)− λG+r(ε)

)
Tc,

(
λr(ε) + λG+r(ε)

)
Tc

Nsym

)
. (20)

Furthermore, from Equation (19), it can be seen that Dk | ε and D` | ε are independent for

all k 6= ` with k, ` ∈ {0, 1, . . . , G− 1}.

Returning to the multiple UDC, single phase test statistics, note that from Equation (19)

that we have the following:

D` =


g` − g`+1

2
, 0 ≤ ` ≤ G− 2

gG−1 + g0

2
, ` = G− 1

. (21)

Conditioned on the symbol timing offset ε, the relationship given in Equation (21)

expresses the multiple UDC, single phase test statistics {g`}G−1
`=0 in terms of a set of
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independent Gaussian random variables, namely {D` | ε}G−1
`=0 . Also, as the mapping

between {g`}G−1
`=0 and {D`}G−1

`=0 is one-to-one [2], they are equivalent sets of statistics [8].

Hence, {D`}G−1
`=0 represents a canonical decomposition of the multiple UDC, single phase

test statistics and will be used for all subsequent analysis here for this case.

To formally introduce the canonical multiple UDC, single phase test statistics, we will

define the G× 1 random vector D as

D ,
[

D0 D1 · · · DG−1

]T
. (22)

From Equations (21) and (9), we can express D in Equation (22) as follows:

D = Ag ,

where A is the G×G matrix

A ,



1
2 − 1

2 0 · · · 0

0 1
2 − 1

2

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 1
2 − 1

2

1
2 0 · · · 0 1

2


.

In summary, from Equation (20), the canonical multiple UDC, single phase test statistic

vector D from Equation (22) satisfies

D | ε ∼ NG
(
µD|ε,ΣD|ε

)
, (23)

where we have[
µD|ε

]
k

=
(
λk(ε)− λG+k(ε)

)
Tc , 0 ≤ k ≤ G− 1 , (24)

[
ΣD|ε

]
k,`

=


(
λk(ε) + λG+k(ε)

)
Tc

Nsym
, k = `

0 , k 6= `

, 0 ≤ k, ` ≤ G− 1 . (25)

Conforming to the notational conventions used here, we will denote an instance of D by D.

C. Probabilistic Modeling of the Single UDC, Multiple Phase Statistics

Analogous to the multiple UDC, single phase case, to statistically characterize the single

UDC, multiple phase test statistics from Equation (8), note that we can express the

normalized count random variable g` as

g` =

(2G)−1∑
r=0

(−1)b
r−`
G c C`,r , where C`,r ,

1

Nspp

Nspp−1∑
q=0

N(2G)(q+`Nspp)+r . (26)

11



As with the random variable Cr defined in Equation (15), the central limit theorem can be

applied to C`,r conditioned on the symbol timing offset ε, for large Nspp. In this case, we

have

C`,r | ε ∼ N
(
λr(ε)Tc,

λr(ε)Tc
Nspp

)
. (27)

Furthermore, as C`,r is formed from non-overlapping count random variables for varying `

and r as evident from Equation (26), it follows that C`0,r0 | ε and C`1,r1 | ε are independent

for all `0 6= `1 or r0 6= r1, where `0, `1 ∈ {0, 1, . . . , G− 1} and r0, r1 ∈ {0, 1, . . . , (2G)− 1}.

To further simplify the probabilistic model of the single UDC, multiple phase test

statistics, note that from Equation (26) that we have

g` =

G−1∑
r=0

(−1)b
r−`
G cD`,r , where D`,r , C`,r − C`,G+r , 0 ≤ `, r ≤ G− 1 . (28)

From Equation (27) and the fact that C`,r | ε and C`,G+r | ε are independent for all ` and

0 ≤ r ≤ G− 1, it can be shown that we have [2]

D`,r | ε ∼ N

((
λr(ε)− λG+r(ε)

)
Tc,

(
λr(ε) + λG+r(ε)

)
Tc

Nspp

)
. (29)

Furthermore, from Equation (28), it can be seen that D`0,r0 | ε and D`1,r1 | ε are

independent for all `0 6= `1 or r0 6= r1, where `0, `1, r0, r1 ∈ {0, 1, . . . , G− 1}. Using this

result in Equation (28), it follows that gk | ε and g` | ε are independent for all k 6= ` with

k, ` ∈ {0, 1, . . . , G− 1}. Combining this latest fact with Equation (29), it follows that the

single UDC, multiple phase test statistic vector g from Equation (9) satisfies the following

[2]:

g | ε ∼ NG
(
µg|ε,Σg|ε

)
, (30)

where we have[
µg|ε

]
k

=

G−1∑
r=0

(−1)b
r−k
G c (λr(ε)− λG+r(ε)

)
Tc , 0 ≤ k ≤ G− 1 , (31)

Σg|ε =

(
G−1∑
r=0

(
λr(ε) + λG+r(ε)

)
Tc

Nspp

)
IG . (32)

Here, IG denotes the G×G identity matrix [3].

IV. Neyman-Pearson Hypothesis Test

In this setting, a decision will be made as to whether the null or present hypothesis,

namely H0 or H1 respectively from Equation (5), is true based on the Neyman-Pearson

hypothesis test [2, 8]. This test compares the likelihood ratio (or equivalently the log

likelihood ratio as we will use here [2]) to a threshold value, which we will denote by η. If

the ratio is lower than η, then H0 is selected, whereas if the ratio exceeds η, then H1 is

chosen. In the event that the ratio equals η, then either H0 or H1 is randomly selected

according to the prior distribution of the hypotheses, which will either be assumed to be

12



known or modeled as uniformly distributed if not. Specifically for the Neyman-Pearson

test, the threshold η is chosen such that the false alarm probability [2], which we denote

here by PFA, equals some prescribed value, say α. By the Neyman-Pearson lemma [2, 8],

the such a threshold test is the most powerful test [2] of size α for a threshold η.

To quantitatively introduce the Neyman-Pearson hypothesis test, we will first formally

define the log likelihood ratio. The log likelihood ratio Λ(x) is defined as follows [2]:

Λ(x) , log

[
fx |H1

(x)

fx |H0
(x)

]
. (33)

In Equation (33), fx |H0
(x) and fx |H1

(x) denote, respectively, the pdfs of the observed

UDC test statistic vector x (either D from Equation (22) for the multiple UDC, single

phase case or g from Equation (9) for the single UDC, multiple phase case) under

hypotheses H0 and H1. Here, fx |H1
(x) will be marginalized over the random symbol

timing offset, which we will denote here by ε. Specifically, fx |H1
(x) is calculated as

fx |H1
(x) =

∫
Rε

fx |H1,ε(x | ε) fε(ε) dε , (34)

where, fε(ε) denotes the pdf of the random symbol timing offset ε and Rε represents the

region of support of this pdf. In addition, fx |H1,ε(x | ε) denotes the conditional pdf of the

UDC test statistic vector x given the timing offset ε. From the discussion in Section II, we

will assume here that ε is uniformly distributed [2] across a symbol interval. With this

assumption, without loss of generality, the expression in Equation (34) becomes

fx |H1
(x) =

1

(M + P )

∫ (M+P )

0

fx |H1,ε(x | ε) dε . (35)

With the log likelihood ratio introduced as such, we are now ready to state the

Neyman-Pearson hypothesis test. This test is described below as follows [2, 8]:

Λ(x)
H1

≷
H0

η , where PFA , Pr {Λ(x) > η |H0} = α . (36)

The probability of false alarm can be calculated via the following expression:

PFA =

∫
RH1

fx |H0
(x) dx , (37)

where RH1
is the decision region corresponding to the present hypothesis H1 defined as

RH1
, {x : Λ(x) > η} . (38)

Using Equations (35), (37), and (38), we can derive the Neyman-Pearson hypothesis test

in Equation (36) for uplink signal detection. To evaluate the performance of this test, we

can compute the missed detection probability [2, 8], denoted by PMD and given by the

following expression:

PMD =

∫
RH0

fx |H1
(x) dx , (39)

13



where RH0
is the decision region corresponding to the null hypothesis H0 defined as

RH0
, {x : Λ(x) < η} . (40)

The ultimate measure of performance of a hypothesis test would be the probability of error

[2, 8], denoted by PE . This can be expressed in terms of the false alarm probability PFA

and the probability of missed detection PMD as follows [2]:

PE = PFAPH0
+ PMDPH1

,

where PH0
and PH1

denote, respectively, the a priori probabilities of the hypotheses H0

and H1. However, as PH0
and PH1

will not be known in general and since the error

probability PE will typically be dominated by the false alarm probability PFA by design

here, it will be more insightful to assess the performance of the Neyman-Pearson

hypothesis test in terms of the missed detection probability PMD from Equation (39).

A. Symbol Timing Offset Conditional Test

As will be subsequently shown in Section V, calculating the log likelihood ratio Λ(x) from

Equation (33) can often be difficult and intractable due to the form of the marginalized

pdf fx |H1
(x) from Equation (34). In such cases, it will be more insightful to derive the

Neyman-Pearson hypothesis test conditioned on a specific value of the symbol timing

offset, say ε0. For this type of test, we calculate the conditional log likelihood Λ(x | ε0)

defined as

Λ(x | ε0) , log

[
fx |H1,ε(x | ε0)

fx |H0
(x)

]
. (41)

From this, the conditional Neyman-Pearson hypothesis test is given as follows:

Λ(x | ε0)
H1

≷
H0

η , where PFA , Pr {Λ(x | ε0) > η |H0} = α . (42)

The false alarm probability PFA and missed detection probability PMD are then given by

PFA =

∫
RH1

fx |H0
(x) dx , where RH1

, {x : Λ(x | ε0) > η} , (43)

and

PMD =

∫
RH0

fx |H1,ε(x | ε0) dx , where RH0
, {x : Λ(x | ε0) < η} . (44)

In Section VI, we derive and assess the performance of the Neyman-Pearson hypothesis

test for a worst case symbol timing offset in which the offset lies in between two UDC

timing phases.

V. Unconditional Hypothesis Test Detection Analysis for Important Special Cases

In this section, we will focus on uplink signal detection using the unconditional

Neyman-Pearson hypothesis test for certain special cases for which much of the analysis is

14



Table 1. Possible operating point conditions for a Mars-to-Earth communication link.

Ts 65.536 µs

λb 1× 106 p/s

λs 50× 103 p/s

tractable. For the DOT uplink signaling format, suggested values for the PPM order and

number of ISGT slots have been M = 2 and P = 2, respectively. These values will be used

for the remainder of this article.

A set of possible operating point conditions for a Mars-to-Earth communication link is

shown in Table 1. Note that from these values, as well as the suggested PPM order and

number of ISGT slots that we have Ks = 13.1072 and Kb = 65.536. These parameters will

be used throughout the article.

A suggested value for the false alarm probability is PFA = 10−3, which will be used for the

remainder of this article, while a possible maximum target value for the missed detection

probability is PMD = 10−6. Also, all PMD results will be plotted as a function of the

detection time Td, although a target value for the number of symbols Nsym = 255 has been

suggested.

Finally, for subsequent notational simplicity, we will define the following standard

deviation [2] type quantities:

σb ,



√
4Kb

GNsym
, multiple UDC, single phase case√

4Kb

Nspp
, single UDC, multiple phase case

, (45)

σs,b ,



√
Ks + 4Kb

GNsym
, multiple UDC, single phase case√

Ks + 4Kb

Nspp
, single UDC, multiple phase case

. (46)

These quantities will be used throughout the article.

A. Single UDC, Single Phase Case

Here, we have G = 1, and so for this degenerate case, the multiple UDC, single phase and

single UDC, multiple phase systems are identical. Thus, from Equations (9) and (19), we

get

g = g = g0 = D0 .

Hence, from Equation (20), it follows that we have

g | ε ∼ N

((
λ0(ε)− λ1(ε)

)
Tc,

(
λ0(ε) + λ1(ε)

)
Tc

Nsym

)
, (47)
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Figure 5. Plots of λ0(ε) and λ1(ε) from Equation (48) as a function of ε for 0 ≤ ε < 4.

where we have Tc = 2Ts from Equation (6). From Equations (11) and (4), it can be shown

that we have the following for λ0(ε) and λ1(ε), respectively, in the case of telemetry being

present:

λ0(ε) = λs |ε− 2|+ λb

λ1(ε) = λs (2− |ε− 2|) + λb

 0 ≤ ε < 4 . (48)

Plots of λ0(ε) and λ1(ε) from Equation (48) as a function of ε are shown in Figure 5. As

can be seen, λ0(ε) and λ1(ε) sum up to a constant value of 2 (λs + λb) and λ1(ε) is simply

a cyclically shifted version of λ0(ε) (as λ0(ε) and λ1(ε) are periodic functions of ε with

period 4 here).

From Equation (48), we have the following:

(
λ0(ε)− λ1(ε)

)
Tc =

 0 , under H0

Ks (|ε− 2| − 1) , under H1

,

(
λ0(ε) + λ1(ε)

)
Tc

Nsym
=


4Kb
Nsym

, under H0

Ks+4Kb
Nsym

, under H1

.

Thus, from Equations (47) and (1), we have

fg |H0
(g) =

1√
4Kb
Nsym

φ

 g√
4Kb
Nsym

 , (49)

fg |H1,ε(g | ε) =
1√

Ks+4Kb
Nsym

φ

g −Ks (|ε− 2| − 1)√
Ks+4Kb
Nsym

 , 0 ≤ ε < 4 . (50)

Substituting Equation (50) into Equation (35), it can be shown that we have the following

after some algebraic manipulation:

fg |H1
(g) =

1

2Ks

Φ

 g +Ks√
Ks+4Kb
Nsym

− Φ

 g −Ks√
Ks+4Kb
Nsym

 . (51)

Using Equations (45) and (46) in Equations (49) and (51), yields

fg |H0
(g) =

1

σb
φ

(
g

σb

)
, (52)

fg |H1
(g) =

1

2Ks

[
Φ

(
g +Ks

σs,b

)
− Φ

(
g −Ks

σs,b

)]
. (53)
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Figure 6. Single UDC, single phase pdf plots: (a) fg |H0
(g) and (b) fg |H1

(g). (Here, Ks = 13.1072,

Kb = 65.536, and Nsym = 255.)

Plots of the pdfs fg |H0
(g) and fg |H1

(g) from Equations (52) and (53) are shown in Figure

6(a) and (b), respectively, for the parameters mentioned at the beginning of this section.

As can be seen from Figure 6(b), in the presence of telemetry, the UDC test statistic g will

have zero mean as it does for the case of telemetry being absent, but will have a larger

variance due to the presence of signal illumination.

Heuristically, it appears from Figure 6(b) that fg |H1
(g) is approximately uniformly

distributed over the interval [−Ks,Ks). For the case in which Nsym is large, we can show

that this will approximately be true. To show this, we first note that as the variance of a

normal cdf goes to zero, the cdf will approach a step function [2]. In other words, from

Equation (1), it can be shown that we have

lim
σ→0

Φ

(
x− µ
σ

)
= u(x− µ) , (54)

where u(x) is the Heaviside step function [2] defined as

u(x) ,

 0 , x < 0

1 , x ≥ 0
.

Now, from Equation (46), it is clear that σs,b → 0 as Nsym gets larger. Hence, using

Equation (54) in Equation (53), we get the following approximation for the present

hypothesis pdf:

fg |H1
(g) ≈ 1

2Ks
[u(g +Ks)− u(g −Ks)] =


0 , g < −Ks

1
2Ks

, −Ks ≤ g < Ks

0 , g ≥ Ks

. (55)

Thus, g is approximately uniform over the interval [−Ks,Ks), which we will express as

g ∼ U [−Ks,Ks).
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Figure 7. Plot of the exact log likelihood ratio Λ(g) along with its approximation in Equation (56) for the

single UDC, single phase case (Ks = 13.1072, Kb = 65.536, and Nsym = 255).

Continuing further, it can be seen from Equations (52) and (53) that a closed form

expression for the log likelihood ratio Λ(g) given in Equation (33) does not exist. However,

by using the uniform distribution approximation for fg |H1
(g) as given in Equation (55), a

closed form approximate expression can be obtained. Upon using Equations (55) and (52)

with Equation (33), we obtain the following approximation for the log likelihood ratio:

Λ(g) ≈


∞ , g < −Ks

g2

2σ2
b
− log

(
2Ks√
2πσ2

b

)
, −Ks ≤ g < Ks

∞ , g ≥ Ks

. (56)

A plot of the exact log likelihood ratio Λ(g) along with its approximation in Equation (56)

is shown in Figure 7 for the above suggested parameters. As can be seen, the approximate

log likelihood ratio is a very good fit to the exact expression for −Ks ≤ g < Ks.

To return to the Neyman-Pearson hypothesis test from Equation (36), we will use the log

likelihood ratio approximation from Equation (56). Assuming that the threshold value η

from Equation (36) is in the region where Λ(g) is finite, then from Equations (56), (40),

and (38) we have

RH0 = {g : |g| < r0} , RH1 = {g : |g| > r0} , (57)

where r0 is a threshold value that is a function of the original threshold η. Using Equations

(57) and (52) in Equation (37), the false alarm probability PFA can be shown to be

PFA = 2

[
1− Φ

(
r0

σb

)]
.

Enforcing the constraint that PFA = α as required for the Neyman-Pearson hypothesis

test leads to the following for the threshold value r0:

r0 = σbΦ
−1
(

1− α

2

)
, (58)
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Figure 8. Plot of the missed detection probability PMD as a function of the detection time Td for the single

UDC, single phase case (Ks = 13.1072, Kb = 65.536).

where Φ−1(x) is the quantile function of the standard normal distribution (i.e., the inverse

of the standard normal cdf Φ(x)) [2]. In terms of the threshold r0, the missed detection

probability PMD can be expressed as follows using Equations (39), (57), and (53) after

some algebraic manipulation:

PMD =

[
Φ

(
r0 +Ks

σs,b

)
+ Φ

(
r0 −Ks

σs,b

)
− 1

]
+

r0

Ks

[
Φ

(
r0 +Ks

σs,b

)
− Φ

(
r0 −Ks

σs,b

)]
+
σs,b
Ks

[
φ

(
r0 +Ks

σs,b

)
− φ

(
r0 −Ks

σs,b

)] .

(59)

This results follows from exploiting the following properties of the φ(x) and Φ(x) functions

[2]:

φ(−x) = φ(x) , Φ(−x) = 1− Φ(x) ,

∫
Φ(x) dx = xΦ(x) + φ(x) .

Using the threshold value for r0 from Equation (58) in Equation (59), we then have an

expression for PMD as a function of Kb, Ks, Nsym, and α. A plot of the missed detection

probability PMD as a function of the detection time Td for the parameters mentioned at

the beginning of this section is shown in Figure 8. As can be seen, the probability of

missed detection is excessively large here and well above the maximum target value of

10−6. This shows that for this possible operating point that a single UDC, single phase

system will not be sufficient for uplink signal detection.

B. Dual UDC, Single Phase Case

Here, we have G = 2, and so from Equations (23), (24), and (25), we get

D | ε ∼ N2

(
µD|ε,ΣD|ε

)
, (60)
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where we have

µD|ε =

 (λ0(ε)− λ2(ε)
)
Tc(

λ1(ε)− λ3(ε)
)
Tc

 , (61)

ΣD|ε =

 (λ0(ε)+λ2(ε))Tc
Nsym

0

0
(λ1(ε)+λ3(ε))Tc

Nsym

 . (62)

Here, Tc = Ts from Equation (6). To obtain the symbol timing offset dependent arrival

rates
{
λr(ε)

}3

r=0
, note that from Equations (11) and (4) that we have λr(ε) = λb for all r

under H0. Under H1, it can be shown that we have the following:

λ0(ε) =



λs2 (1− ε) + λb , 0 ≤ ε < 1

λb , 1 ≤ ε < 2

λs2 (ε− 2) + λb , 2 ≤ ε < 3

2λs + λb , 3 ≤ ε < 4

,

λ1(ε) =



2λs + λb , 0 ≤ ε < 1

λs2 (2− ε) + λb , 1 ≤ ε < 2

λb , 2 ≤ ε < 3

λs2 (ε− 3) + λb , 3 ≤ ε < 4

,

λ2(ε) =



λs2ε+ λb , 0 ≤ ε < 1

2λs + λb , 1 ≤ ε < 2

λs2 (3− ε) + λb , 2 ≤ ε < 3

λb , 3 ≤ ε < 4

,

λ3(ε) =



λb , 0 ≤ ε < 1

λs2 (ε− 1) + λb , 1 ≤ ε < 2

2λs + λb , 2 ≤ ε < 3

λs2 (4− ε) + λb , 3 ≤ ε < 4

.

(63)

Plots of
{
λr(ε)

}3

r=0
from Equation (63) as a function of ε are shown in Figure 9. Similar

to the single UDC case shown in Figure 5, it can be seen from Figure 9 that λ(r+1) mod 4(ε)

is simply a cyclically shifted version of λr(ε) for 0 ≤ r ≤ 3.

Combining Equations (63), (45), and (46) with Equations (61) and (62) leads to the

following:

µD|ε =



 0

0

 , under H0 Ks
2 µD0

(ε)

Ks
2 µD1

(ε)

 , under H1

, ΣD|ε =

 σ2
b I2 , under H0

σ2
s,bI2 , under H1

, (64)
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Figure 9. Plots of
{
λr(ε)

}3

r=0
from Equation (63) as a function of ε for 0 ≤ ε < 4.

where µD0
(ε) and µD1

(ε) are defined as

µD0
(ε) ,



1− 2ε , 0 ≤ ε < 1

−1 , 1 ≤ ε < 2

−1 + 2 (ε− 2) , 2 ≤ ε < 3

1 , 3 ≤ ε < 4

,

µD1
(ε) ,



1 , 0 ≤ ε < 1

1− 2 (ε− 1) , 1 ≤ ε < 2

−1 , 2 ≤ ε < 3

−1 + 2 (ε− 3) , 3 ≤ ε < 4

.

(65)

Using Equation (64) in Equation (60), it follows that under H0, we have

fD |H0
(D) = fD0,D1 |H0

(D0, D1) =
1

σ2
b

φ

(
D0

σb

)
φ

(
D1

σb

)
, (66)

whereas under H1, we have

fD |H1,ε(D | ε) = fD0,D1 |H1,ε(D0, D1 | ε) =
1

σ2
s,b

φ

(
D0 − Ks

2 µD0
(ε)

σs,b

)
φ

(
D1 − Ks

2 µD1
(ε)

σs,b

)
.

(67)

Substituting Equations (67) and (65) into Equation (35), it can be shown that we have the

following after much algebraic manipulation:

fD0,D1 |H1
(D0, D1) =

1

2

{
1

Ks

[
Φ

(
D0 + Ks

2

σs,b

)
− Φ

(
D0 − Ks

2

σs,b

)]

× 1

2

[
1

σs,b
φ

(
D1 + Ks

2

σs,b

)
+

1

σs,b
φ

(
D1 − Ks

2

σs,b

)]

+
1

Ks

[
Φ

(
D1 + Ks

2

σs,b

)
− Φ

(
D1 − Ks

2

σs,b

)]

×1

2

[
1

σs,b
φ

(
D0 + Ks

2

σs,b

)
+

1

σs,b
φ

(
D0 − Ks

2

σs,b

)]}
. (68)

Plots of the pdfs fD0,D1 |H0
(D0, D1) and fD0,D1 |H1

(D0, D1) from Equations (66) and (68)

are shown in Figure 10(a) and (b), respectively, for the parameters stated at the beginning
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Figure 10. Dual UDC, single phase pdf plots: (a) fD0,D1 |H0
(D0, D1) and (b) fD0,D1 |H1

(D0, D1). (Here,

Ks = 13.1072, Kb = 65.536, and Nsym = 255.)

of this section. As can be seen, fD0,D1 |H0
(D0, D1) is concentrated near the origin, whereas

fD0,D1 |H1
(D0, D1) is concentrated along an L∞ norm circle of radius Ks

2 [8].

A plot of the log likelihood ratio Λ(D0, D1) given by Equations (33), (68), and (66) is

shown in Figure 11 for the above mentioned parameters. As can be seen, the behavior of

the log likelihood ratio is difficult to deduce and there does not appear to be a tractable

form for the decision regions RH0
and RH1

from Equations (40) and (38), respectively, for

a given threshold value η.

From the view of the present hypothesis pdf fD0,D1 |H1
(D0, D1) shown in Figure 10(b) as

well as that of the log likelihood ratio Λ(D0, D1) for small arguments given in Figure 11, it

appears as though an approximate log likelihood ratio decision based rule is as follows:

||D||∞ = max {|D0| , |D1|}
H1

≷
H0

η , (69)

where ||x||∞ denotes the L∞ norm of a vector x [8].

C. Single UDC, Dual Phase Case

Once again, we have G = 2, and so from Equations (30), (31), and (32), we have the

following:

g | ε ∼ N2

(
µg|ε,Σg|ε

)
, (70)

where we have

µg|ε =

 (
λ0(ε)− λ2(ε)

)
Tc +

(
λ1(ε)− λ3(ε)

)
Tc

−
(
λ0(ε)− λ2(ε)

)
Tc +

(
λ1(ε)− λ3(ε)

)
Tc

 ,
Σg|ε =

[(
λ0(ε) + λ2(ε)

)
Tc

Nspp
+

(
λ1(ε) + λ3(ε)

)
Tc

Nspp

]
I2 .

22



D0

D
1

 

 

Λ
(D

0 ,D
1 )

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

0

50

100

150

200

250

300

350

400

Figure 11. Plot of the log likelihood ratio Λ(D0, D1) for the dual UDC, single phase case (Ks = 13.1072,

Kb = 65.536, and Nsym = 255).

As before, we have Tc = Ts here. Using Equation (63), along with Equations (45) and

(46), we get

µg|ε =



 0

0

 , under H0 Ksµg0
(ε)

Ksµg1
(ε)

 , under H1

, Σg|ε =

 σ2
b I2 , under H0

σ2
s,bI2 , under H1

, (71)

where µg0
(ε) and µg1

(ε) are defined as

µg0
(ε) ,



1− ε , 0 ≤ ε < 1

1− ε , 1 ≤ ε < 2

ε− 3 , 2 ≤ ε < 3

ε− 3 , 3 ≤ ε < 4

, µg1
(ε) ,



ε , 0 ≤ ε < 1

2− ε , 1 ≤ ε < 2

2− ε , 2 ≤ ε < 3

ε− 4 , 3 ≤ ε < 4

. (72)

Using Equation (71) in Equation (70), it follows that under H0, we have

fg |H0
(g) = fg0,g1 |H0

(g0, g1) =
1

σ2
b

φ

(
g0

σb

)
φ

(
g1

σb

)
, (73)

whereas under H1, we have

fg |H1,ε(g | ε) = fg0,g1 |H1,ε(g0, g1 | ε) =
1

σ2
s,b

φ

(
g0 −Ksµg0

(ε)

σs,b

)
φ

(
g1 −Ksµg1

(ε)

σs,b

)
. (74)
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Figure 12. Single UDC, dual phase pdf plots: (a) fg0,g1 |H0
(g0, g1) and (b) fg0,g1 |H1

(g0, g1). (Here,

Ks = 13.1072, Kb = 65.536, and Nspp = 128.)

Substituting Equations (74) and (72) into Equation (35), it can be shown that we have the

following after much algebraic manipulation:

fg0,g1 |H1
(g0, g1) =

1

2

 1

Ks

√
2

Φ


(
g0+g1√

2

)
+ Ks√

2

σs,b

− Φ


(
g0+g1√

2

)
− Ks√

2

σs,b


× 1

2

 1

σs,b
φ


(
g0−g1√

2

)
+ Ks√

2

σs,b

+
1

σs,b
φ


(
g0−g1√

2

)
− Ks√

2

σs,b


+

1

Ks

√
2

Φ


(
g0−g1√

2

)
+ Ks√

2

σs,b

− Φ


(
g0−g1√

2

)
− Ks√

2

σs,b


× 1

2

 1

σs,b
φ


(
g0+g1√

2

)
+ Ks√

2

σs,b

+
1

σs,b
φ


(
g0+g1√

2

)
− Ks√

2

σs,b



.

(75)

Plots of the pdfs fg0,g1 |H0
(g0, g1) and fg0,g1 |H1

(g0, g1) from Equations (73) and (75) are

shown in Figure 12(a) and (b), respectively, for the parameters stated at the beginning of

this section. In order make the detection time approximately commensurate between the

single UDC, dual phase case and the dual UDC, single phase case, we have opted to used

Nspp =
⌈

255
2

⌉
= 128. As can be seen, fg0,g1 |H0

(g0, g1) is concentrated near the origin,

whereas fg0,g1 |H1
(D0, D1) is concentrated along an L1 norm circle of radius Ks [8].

A plot of the log likelihood ratio Λ(g0, g1) given by Equations (33), (75), and (73) is shown

in Figure 13 for the above mentioned parameters. As before with the dual UDC, single

phase case, it can be seen that the behavior of the log likelihood ratio is not easily deduced

and there does not appear to be a tractable form for the decision regions RH0
and RH1

from Equations (40) and (38), respectively, for a given threshold value η.
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Figure 13. Plot of the log likelihood ratio Λ(g0, g1) for the single UDC, dual phase case (Ks = 13.1072,

Kb = 65.536, and Nspp = 128).

From the view of the present hypothesis pdf fg0,g1 |H1
(g0, g1) shown in Figure 12(b) as well

as that of the log likelihood ratio Λ(g0, g1) for small arguments given in Figure 13, it

appears as though an approximate log likelihood ratio decision based rule is as follows:

||g||1 = |g0|+ |g1|
H1

≷
H0

η , (76)

where ||x||1 denotes the L1 norm of a vector x [8].

VI. Worst Case Scenario Symbol Timing Offset Hypothesis Test Detection Analysis

Perhaps the main problem with assessing the performance of the unconditional

Neyman-Pearson hypothesis test is that determining the respective likelihood decision

regions RH0
and RH1

from Equations (40) and (38) is often very difficult, as evidenced for

both the dual UDC, single phase system in Section V-B as well as the single UDC, dual

phase system in Section V-C. This, in turn, makes enforcing the false alarm probability

constraint and calculating the resulting probability of missed detection intractable.

One way to circumvent this problem is to derive the Neyman-Pearson hypothesis test

conditioned on a specific symbol timing offset value, as described in Section IV-A. For

example, one possible value to consider which is of practical significance is a worst case

scenario (WCS) symbol timing offset, in which the offset is exactly in between two timing

phases. From the definition of the chip interval Tc in Equation (6), it is clear that the

following symbol timing offsets represent WCS values:

εWCS =

(
M + P

2G

)
k +

(
M + P

4G

)
, 0 ≤ k ≤ (2G)− 1 .

Without loss of generality, we can choose the first WCS offset, corresponding to k = 0. For

the case of M = P = 2 which we will focus on here, this then becomes εWCS = 1
G .
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From Equations (24), (25), (31), and (32), it is clear that the characteristics of the test

statistics for both the multiple UDC, single phase and single UDC, multiple phase systems

depend on the values of
(
λk(ε)− λG+k(ε)

)
and

(
λk(ε) + λG+k(ε)

)
for 0 ≤ k ≤ G− 1.

Regardless of the value of ε, under H0, we have
(
λk(ε)− λG+k(ε)

)
= 0 and(

λk(ε) + λG+k(ε)
)

= 2λb for all k. For the special case of εWCS = 1
G , it can be show that

under H1, we have

λk(εWCS)− λG+k(εWCS) =

 0 , k = 0

2λs , 1 ≤ k ≤ G− 1
, (77)

λk(εWCS) + λG+k(εWCS) = 2 (λs + λb) = 2λs + 2λb ∀ 0 ≤ k ≤ G− 1 . (78)

Coupled with the fact that Tc = 2Ts
G here, we can use Equations (77) and (78) to simplify

the UDC test statistics and derive and assess the performance of the Neyman-Pearson

hypothesis test for a WCS symbol timing offset.

A. Multiple UDC, Single Phase Case

Combining Equations (77) and (78) with Equations (23), (24), (25), and (2), it can be

shown that we have

fD |H0
(D) =

1

(2π)
G
2
(
det
(
ΣD|H0

)) 1
2

e
− 1

2 (D−µD|H0
)
T

Σ−1
D|H0

(D−µD|H0
) , (79)

fD |H1,ε(D | εWCS) =
1

(2π)
G
2
(
det
(
ΣD|H1,ε

)) 1
2

e
− 1

2 (D−µD|H1,ε
)
T

Σ−1
D|H1,ε

(D−µD|H1,ε
) , (80)

where we have the following upon using Equations (45) and (46):

µD|H0
= 0G×1 , ΣD|H0

= σ2
b IG , (81)[

µD|H1,ε

]
k

=

 0 , k = 0

Ks
G , 1 ≤ k ≤ G− 1

, ΣD|H1,ε = σ2
s,bIG . (82)

Upon using Equations (80) and (79) in Equations (41) and (42), we obtain the following

likelihood rule after much algebraic manipulation:

||D −DC ||2
H1

≷
H0

r2
0 , (83)

where DC is a G× 1 vector defined as

[DC ]k ,

 0 , k = 0

− 4Kb
G , 1 ≤ k ≤ G− 1

, (84)

and r0 is a threshold value that is a function of the original threshold η from Equation

(42). Also, ||x|| denotes the Euclidean or L2 norm of a vector x [8]. Note that from

Equation (83), the decision rule boundary represents a G-dimensional hypersphere in RG

[8] with center at DC and radius r0. In addition, note that from Equation (84) that the
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decision boundary center only depends on the mean background count Kb and the number

of UDCs G and does not depend on the number of symbols or the telemetry signal

parameters. From Equation (83), the decision regions are as follows:

RH0
,
{
D : ||D −DC ||2 < r2

0

}
,RH1

,
{
D : ||D −DC ||2 > r2

0

}
.

To enforce the false alarm probability constraint PFA = α, we use Equations (43), (79),

and (81) to get

PFA =

∫
RH1

fD |H0
(D) dD = 1−

∫
RH0

fD |H0
(D) dD = α .

From this, coupled with Equations (79) and (81), we find

1− α =

∫
RH0

1

(2π)
G
2 σGb

e
− 1

2σ2
b

||D||2
dD . (85)

Consider the change of variables x , 1
σb
D. Then, we have D = σbx and so dD = σGb dx.

In addition, we have ||D||2 = σ2
b ||x||

2
, and so Equation (85) becomes the following:

1− α =

∫
Rx

1

(2π)
G
2

e−
1
2 ||x||2 dx , (86)

where Rx is the region

Rx ,

{
x : ||x− xC ||2 <

r2
0

σ2
b

}
, where xC ,

1

σb
DC . (87)

Using the result from the Appendix given in Equation (A-1) with Equations (86) and (87)

leads to the following:

1− α = zNCχ2

(
r2
0

σ2
b

;G, ||xC ||2
)
.

Inverting this relation to obtain the threshold r2
0 yields

r2
0 = σ2

bz
−1
NCχ2

(
1− α;G, ||xC ||2

)
. (88)

To further simplify Equation (88), note that from Equations (87), (84), and (45) that we

have

||xC ||2 =
1

σ2
b

||DC ||2 =
GNsym

4Kb
·
(
−4Kb

G

)2

· (G− 1) = (4Kb)Nsym

(
G− 1

G

)
.

Hence, Equation (88) simplifies to

r2
0 =

(
4Kb

GNsym

)
z−1
NCχ2

(
1− α;G, (4Kb)Nsym

(
G− 1

G

))
. (89)

Note that this relation provides for a way to determine the decision threshold r2
0 to satisfy

the false alarm probability constraint PFA = α. Assuming that r2
0 has already been

obtained as such, we can calculate the associated missed detection probability PMD.
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To compute PMD, we use Equations (44), (80), and (82) to get

PMD =

∫
RH0

fD |H1,ε(D | εWCS) dD =

∫
RH0

1

(2π)
G
2 σGs,b

e
− 1

2σ2
s,b
||D−µD|H1,ε

||2
dD . (90)

As before, consider the change of variables x , 1
σs,b

(
D − µD|H1,ε

)
. Then, we have

D = σs,bx+ µD|H1,ε and so dD = σGs,bdx. Substituting this into Equation (90) leads to

the following:

PMD =

∫
Rx

1

(2π)
G
2

e−
1
2 ||x||2 dx , (91)

where Rx is the region

Rx ,

{
x : ||x− xC ||2 <

r2
0

σ2
s,b

}
, where xC ,

1

σs,b

(
DC − µD|H1,ε

)
. (92)

Exploiting the result from the Appendix given in Equation (A-1) with Equations (91) and

(92) leads to the following:

PMD = zNCχ2

(
r2
0

σ2
s,b

;G, ||xC ||2
)
. (93)

To further simplify Equation (93), note that from Equations (92), (84), (82), and (46) that

we have

||xC ||2 =
1

σ2
s,b

∣∣∣∣∣∣DC − µD|H1,ε

∣∣∣∣∣∣2 =
GNsym

Ks + 4Kb
·
(
−4Kb

G
− Ks

G

)2

· (G− 1) ,

= (Ks + 4Kb)Nsym

(
G− 1

G

)
.

Hence, Equation (93) simplifies to

PMD = zNCχ2

 r2
0[

Ks+4Kb
GNsym

] ;G, (Ks + 4Kb)Nsym

(
G− 1

G

) . (94)

The relations given in Equations (89) and (94) provide a two-step process by which to

assess the performance of the Neyman-Pearson hypothesis test for a multiple UDC, single

phase system with a WCS symbol timing offset. First, the decision threshold parameter r2
0

is computed using Equation (89) to satisfy the false alarm probability constraint PFA = α

and then the missed detection probability is calculated as in Equation (94). An alternate,

simplified way to determine the performance of the hypothesis test is to define the

fictitious parameter β as β , (GNsym) r2
0. Then, we can assess the performance of the

Neyman-Pearson test as follows here:

1) Compute β = (4Kb)z−1
NCχ2

(
1− α;G, (4Kb)Nsym

(
G− 1

G

))
,

2) Calculate PMD = zNCχ2

(
β

Ks + 4Kb
;G, (Ks + 4Kb)Nsym

(
G− 1

G

))
.

(95)

28



10
0

10
1

10
2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Td (ms)

P
M

D

 

 

G = 1

G = 2

G = 3

G = 4

G = 5

G = 6

G = 7

G = 8

G = 16

G = 32

G = 64

G = 128

G = 256

G = 512

G = 1024

Figure 14. Plot of the missed detection probability PMD given by Equation (95) as a function of the

detection time Td for the multiple UDC, single phase case for a WCS symbol timing offset (Ks = 13.1072,

Kb = 65.536, PFA = 10−3).

A plot of PMD given by Equation (95) as a function of the detection time Td = NsymTsym

is shown in Figure 14 for the parameters mentioned in Section V for various values of G.

As can be seen, the performance appears to asymptotically reach a limit as G→∞. This

represents a point of diminishing returns, as increasing G requires both an increase in

hardware (in terms of the number of UDCs required), as well as an increase in

computational complexity for implementing the hypothesis test specified by Equation (83).

For the suggested target of Nsym = 255 (see the beginning of Section V), we have

PMD ≈ 1.7628× 10−9 for G = 2, which is well below the possible maximum value of 10−6.

From this, we can conjecture that a dual UDC, single phase system would suffice for

uplink signal detection in this case.

B. Single UDC, Multiple Phase Case

As before, combining Equations (77) and (78) with Equations (30), (31), (32), and (2), it

can be shown that we have

fg |H0
(g) =

1

(2π)
G
2
(
det
(
Σg|H0

)) 1
2

e
− 1

2 (g−µg|H0
)
T

Σ−1
g|H0

(D−µg|H0
) , (96)

fg |H1,ε(g | εWCS) =
1

(2π)
G
2
(
det
(
Σg|H1,ε

)) 1
2

e
− 1

2 (g−µg|H1,ε
)
T

Σ−1
g|H1,ε

(g−µg|H1,ε
) , (97)
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where we have the following upon using Equations (45) and (46):

µg|H0
= 0G×1 , Σg|H0

= σ2
b IG , (98)[

µg|H1,ε

]
k

=
Ks

G

G−1∑
r=1

(−1)b
r−k
G c , 0 ≤ k ≤ G− 1 , Σg|H1,ε = σ2

s,bIG . (99)

It can be shown that we have

G−1∑
r=1

(−1)b
r−k
G c =

 G− 1 , k = 0

G− (2k − 1) , 1 ≤ k ≤ G− 1
,

and so Equation (99) simplifies to

[
µg|H1,ε

]
k

=

 Ks

(
G−1
G

)
, k = 0

Ks

(
G−(2k−1)

G

)
, 1 ≤ k ≤ G− 1

, Σg|H1,ε = σ2
s,bIG . (100)

Upon using Equations (97) and (96) in Equations (41) and (42), we obtain the following

likelihood rule after much algebraic manipulation:

||g − gC ||
2
H1

≷
H0

r2
0 , (101)

where gC is a G× 1 vector defined as

[gC ]k ,

 −4Kb

(
G−1
G

)
, k = 0

−4Kb

(
G−(2k−1)

G

)
, 1 ≤ k ≤ G− 1

, (102)

and r0 is a threshold value that is a function of the original threshold η from Equation

(42). As for the multiple UDC, single phase case, note that from Equation (101), the

decision rule boundary represents a G-dimensional hypersphere in RG with center at gC
and radius r0. In addition, note that from Equation (102) that the decision boundary

center only depends on the mean background count Kb and the number of UDCs G and

does not depend on the number of symbols or the telemetry signal parameters. From

Equation (101), the decision regions are as follows:

RH0 ,
{
g : ||g − gC ||

2
< r2

0

}
,RH1 ,

{
g : ||g − gC ||

2
> r2

0

}
.

To enforce the false alarm probability constraint PFA = α, we use Equations (43), (96),

and (98) to get

PFA =

∫
RH1

fg |H0
(g) dg = 1−

∫
RH0

fg |H0
(g) dg = α .

From this, coupled with Equations (96) and (98), we find

1− α =

∫
RH0

1

(2π)
G
2 σGb

e
− 1

2σ2
b

||g||2
dg . (103)
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Consider the change of variables x , 1
σb
g. Then, we have g = σbx and so dg = σGb dx. In

addition, we have ||g||2 = σ2
b ||x||

2
, and so Equation (103) becomes the following:

1− α =

∫
Rx

1

(2π)
G
2

e−
1
2 ||x||2 dx , (104)

where Rx is the region

Rx ,

{
x : ||x− xC ||2 <

r2
0

σ2
b

}
, where xC ,

1

σb
gC . (105)

Using the result from the Appendix given in Equation (A-1) with Equations (104) and

(105) leads to the following:

1− α = zNCχ2

(
r2
0

σ2
b

;G, ||xC ||2
)
.

Inverting this relation to obtain the threshold r2
0 yields

r2
0 = σ2

bz
−1
NCχ2

(
1− α;G, ||xC ||2

)
. (106)

To further simplify Equation (106), note that from Equations (105), (102), and (45) that

we have

||xC ||2 =
1

σ2
b

||gC ||
2

= (4Kb)Nspp

[(
G− 1

G

)2

+

G−1∑
k=1

(
G− (2k − 1)

G

)2
]
. (107)

The expression given in Equation (107) can be simplified upon using the following

relations [7]:

G−1∑
k=1

1 = G− 1 ,

G−1∑
k=1

k =
(G− 1)G

2
,

G−1∑
k=1

k2 =
(G− 1)G (2G− 1)

6
. (108)

Upon using Equation (108) in Equation (107), after some algebraic manipulation, we get

||xC ||2 = (4Kb)Nspp

(
G2 − 1

3G

)
.

Hence, Equation (106) simplifies to

r2
0 =

(
4Kb

Nspp

)
z−1
NCχ2

(
1− α;G, (4Kb)Nspp

(
G2 − 1

3G

))
. (109)

Note that this relation provides for a way to determine the decision threshold r2
0 to satisfy

the false alarm probability constraint PFA = α. Assuming that r2
0 has already been

obtained as such, we can calculate the associated missed detection probability PMD.

To compute PMD, we use Equations (44), (97), and (100) to get

PMD =

∫
RH0

fg |H1,ε(g | εWCS) dg =

∫
RH0

1

(2π)
G
2 σGs,b

e
− 1

2σ2
s,b
||g−µg|H1,ε

||2
dg . (110)
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As before, consider the change of variables x , 1
σs,b

(
g − µg|H1,ε

)
. Then, we have

g = σs,bx+ µg|H1,ε and so dg = σGs,bdx. Substituting this into Equation (110) leads to the

following:

PMD =

∫
Rx

1

(2π)
G
2

e−
1
2 ||x||2 dx , (111)

where Rx is the region

Rx ,

{
x : ||x− xC ||2 <

r2
0

σ2
s,b

}
, where xC ,

1

σs,b

(
gC − µg|H1,ε

)
. (112)

Exploiting the result from the Appendix given in Equation (A-1) with Equations (111)

and (112) leads to the following:

PMD = zNCχ2

(
r2
0

σ2
s,b

;G, ||xC ||2
)
. (113)

To further simplify Equation (113), note that from Equations (112), (102), (100), (46), and

(108) that we can show that we have

||xC ||2 =
1

σ2
s,b

∣∣∣∣∣∣gC − µg|H1,ε

∣∣∣∣∣∣2 = (Ks + 4Kb)Nsym

(
G2 − 1

3G

)
.

Hence, Equation (113) simplifies to

PMD = zNCχ2

 r2
0[

Ks+4Kb
Nspp

] ;G, (Ks + 4Kb)Nsym

(
G2 − 1

3G

) . (114)

As with the multiple UDC, single phase system, the relations given in Equations (109) and

(114) provide a two-step process by which to assess the performance of the

Neyman-Pearson hypothesis test for a single UDC, multiple phase system with a WCS

symbol timing offset. First, the decision threshold parameter r2
0 is computed using

Equation (109) to satisfy the false alarm probability constraint PFA = α and then the

missed detection probability is calculated as in Equation (114). An alternate, simplified

way to determine the performance of the hypothesis test is to define the fictitious

parameter β as β , Nsppr
2
0. Then, we can assess the performance of the Neyman-Pearson

test as follows here:

1) Compute β = (4Kb)z−1
NCχ2

(
1− α;G, (4Kb)Nspp

(
G2 − 1

3G

))
,

2) Calculate PMD = zNCχ2

(
β

Ks + 4Kb
;G, (Ks + 4Kb)Nspp

(
G2 − 1

3G

))
.

(115)

A plot of PMD given by Equation (115) as a function of the detection time

Td = NsppGTsym is shown in Figure 15 for the parameters mentioned in Section V for

various values of G. As can be seen, the performance appears to asymptotically reach a

limit as G→∞. This represents a point of diminishing returns, as increasing G requires
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Figure 15. Plot of the missed detection probability PMD given by Equation (115) as a function of the

detection time Td for the single UDC, multiple phase case for a WCS symbol timing offset (Ks = 13.1072,

Kb = 65.536, PFA = 10−3).

both an increase in hardware (in terms of triggering and storing the count statistics for the

number of timing phases required), as well as an increase in computational complexity for

implementing the hypothesis test specified by Equation (101).

For the suggested target of Nsym = 255, corresponding to a detection time of

Td = 66.84672 ms (see Section I-C as well as the beginning of Section V), we have

PMD ≈ 4.9696× 10−4 for G = 2, which is well above the possible maximum value of 10−6.

From this, we can conjecture that a single UDC, dual phase system would not suffice for

uplink signal detection in this case.

VII. Advantages and Disadvantages Between the Multiple UDC, Single Phase and

Single UDC, Multiple Phase Detection Systems

As mentioned in Section VI-A and VI-B, for the suggested operating point considered here

(see the beginning of Section V), a dual UDC, single phase system would suffice for uplink

signal detection in the case of a WCS symbol timing offset, whereas a single UDC, dual

phase system would not. This brings to light some of the trade-offs associated with both

the multiple UDC, single phase and single UDC, multiple phase detection schemes.

For a fixed detection time Td, a multiple UDC, single phase system will exhibit greater

detection performance than a single UDC, multiple phase system. Intuitively, the reason

for this is that the former system has more information available to it to use for signal

detection than the latter one. To see this analytically, consider the conditional WCS

symbol timing offset detection results derived in Section VI. In the case where Td is fixed,
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we have Nspp =
Nsym

G (see Section I-C), and so the performance of the Neyman-Pearson

hypothesis test for a WCS symbol timing offset for the single UDC, multiple phase system

from Equation (115) becomes

1) Compute β = (4Kb)z−1
NCχ2

(
1− α;G, (4Kb)Nsym

(
G− 1

G

)(
G+ 1

3G

))
,

2) Calculate PMD = zNCχ2

(
β

Ks + 4Kb
;G, (Ks + 4Kb)Nsym

(
G− 1

G

)(
G+ 1

3G

))
.

(116)

Comparing Equation (116) with Equation (95), it is evident that the ratio of the

respective non-centrality parameters of the single UDC, multiple phase system to those of

the multiple UDC, single phase system is
(
G+1
3G

)
. For all G ∈ N, the factor

(
G+1
3G

)
is less

than unity and decreases monotonically with G. Asymptotically, we have
(
G+1
3G

)
→ 1

3 as

G→∞. As
(
G+1
3G

)
< 1 for all G ≥ 1, it follows that the respective non-centrality

parameters of the single UDC, multiple phase system are less than those of the multiple

UDC, single phase one. Since it can be shown that the missed detection probability PMD

decreases as the respective non-centrality parameters increase [4], it follows that the

multiple UDC, single phase system will always perform better than the corresponding

single UDC, multiple phase one. Furthermore, as
(
G+1
3G

)
is monotonic decreasing with G,

it follows that the single UDC, multiple phase system will reach a point of diminishing

returns more rapidly than the corresponding multiple UDC, single phase system [4]. This

is evidenced upon comparing Figure 14 with Figure 15.

Despite the fact that a multiple UDC, single phase system outperforms a corresponding

single UDC, multiple phase type scheme for a fixed detection time, there are advantages to

using a single UDC, multiple phase system for signal detection. Specifically, if there is

some leeway with respect to increasing the detection time, then there are several benefits

to a single UDC, multiple phase type implementation. One such benefit is that while it is

difficult to increase the number of UDCs in a multiple UDC, single phase system in a

practical setting as it requires additional hardware, it is very simple to increase the number

of timing phases of a single UDC, multiple phase system, as the only changes required are

to trigger, store, and process the UDC test statistics at the different timing phases. At the

expense of an increase in detection time, the improvement in performance is dramatic and

is the result of both an increased detection time, as well as the number of timing phases.

For example, suppose that initially, G = 2 timing phases are used in a single UDC,

multiple phase system and that for some given detection time that the missed detection

probability is deemed excessively large. To improve the detection performance, we can, for

instance, trigger the UDC to accumulate additional statistics at 3 times finer resolution to

obtain an effective number of G = 6 timing phases. This only requires 6− 2 = 4 additional

UDC test statistics at different timing phases. In essence, from an initial detection time of

Td using G = 2 phases, we arrive at a final detection time of 3Td using G = 6 phases.

Thus, the benefits of an increased detection time are twofold: an inherent improvement in

performance as a result of the increased detection time as well as an additional

improvement due to the increased number of timing phases.
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From a practical point of view, perhaps the most efficient manner in which to increase the

number of timing phases is to do so in powers of 2 until the missed detection probability

performance is deemed acceptable. Specifically, starting from G = 1 timing phase, we

double the timing resolution at each stage by accumulating additional UDC statistics as

required until the missed detection performance is below its target requirement. At the

k-th stage of such a detection scheme, the number of timing phases is G = 2k−1, while the

detection time is Td = 2k−1Td,0, where Td,0 denotes the nominal detection time per phase.

In summary, there are several pros and cons to using both of the proposed uplink signal

detection schemes. While a multiple UDC, single phase system offers improved

performance over a corresponding single UDC, multiple phase system for a fixed detection

time, it requires additional hardware and cannot easily accommodate increased timing

resolution. On the other hand, a single UDC, multiple phase system is amenable to

increased timing resolution, provided that there is sufficient leeway with regards to

increasing the detection time. Of course, with an implementation consisting of a fixed

number of multiple UDCs, improved performance could also be obtained by using multiple

timing phases instead of a single one. This would result in the most advantageous of all of

the schemes considered, as it would result in the most detection information for a given

detection time and number of UDCs.

VIII. Concluding Remarks

In this article, we focused on uplink signal detection for the DOT using the

Neyman-Pearson hypothesis test. Specifically, we considered this hypothesis test for two

different sets of test statistics: those from a multiple UDC, single phase system as well as

those from a single UDC, multiple phase type implementation. Conditioned on a WCS

symbol timing offset, we derived the performance of the Neyman-Pearson test for both sets

of statistics, and assessed the advantages and disadvantages of both detection schemes.

For specific test cases (namely the dual UDC, single phase and single UDC, dual phase

systems), we showed the problems inherent with deriving the performance of the bona fide

unconditional Neyman-Pearson test. In particular, we showed that determining the

decision regions based on the likelihood criterion was intractable for both cases. Future

work involves assessing the performance of a suboptimal Neyman-Pearson type test using

the conjectured decision regions given by Equations (69) and (76) for the dual UDC, single

phase and single UDC, dual phase schemes, respectively. In addition, it would be

worthwhile carrying out similar analysis for the more general multiple UDC, single phase

and single UDC, multiple phase systems.
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Appendix: Multivariate Gaussian Distribution Integral Over a Hypersphere

In this section, we prove the following result:∫
x∈RG:||x−xC ||2<r2

1

(2π)
G
2

e−
1
2 ||x||2 dx = zNCχ2

(
r2;G, ||xC ||2

)
. (A-1)

Note that the integrand in Equation (A-1) is the pdf of a multivariate Gaussian or normal

distribution with NG(0, I), which is a generalization of the standard normal distribution to

the multivariate case [2]. Also, it should be noted that the region of integration in

Equation (A-1) is a hypersphere in RG [8]. As seen in Section VI, this integral arises when

deriving and assessing the performance of the Neyman-Pearson hypothesis test for uplink

signal detection, conditioned on a particular value of the symbol timing offset.

In deriving Equation (A-1), we will use the following result regarding the change of

variables of a multidimensional integral [7]. Suppose that u and v are two G× 1 vectors in

RG related by v = ϕ(u), where ϕ is an injective, differentiable function with continuous

partial derivatives [7]. Furthermore, suppose U and V are two open sets in RG such that

ϕ : U → V . Then, we have the following [7]:∫
V

f(v) dv =

∫
U

f(ϕ(u)) |det(J(ϕ(u)))| du , (A-2)

where J(ϕ(u)) is the G×G Jacobian matrix [7] of the transformation v = ϕ(u) whose

(k, `)-th element is given by

[J(ϕ(u))]k,` =
∂ [v]k
∂ [u]`

, 0 ≤ k ≤ G− 1 , 0 ≤ ` ≤ G− 1 .

To begin deriving Equation (A-1), consider the transformation y , U (x− xC), where U

is a unitary, Householder transformation matrix [3] given by

U , I− 2wwT , where w ,
xC + ||xC || e0

||xC + ||xC || e0||
, (A-3)

where e0 denotes the 0th unit vector [3] which is unity in the 0th component and zero

otherwise. (More generally, ek denotes the k-th unit vector [3] which is unity in the k-th

component and zero otherwise.) As U is a real unitary matrix, we have UTU = UUT = I

[3], and so x = UTy + xC = UT (y − yC), where yC , −UxC . From this relation, it is

clear that the Jacobian matrix is J(ϕ(y)) = UT , and so |det(J(ϕ(y)))| = 1 as U is unitary

[3]. Letting I denote the left hand side of Equation (A-1) and appealing to Equation

(A-2), we get

I ,
∫
x∈RG:||x−xC ||2<r2

1

(2π)
G
2

e−
1
2 ||x||2 dx =

∫
y∈RG:||y||2<r2

1

(2π)
G
2

e−
1
2 ||y−yC ||2 dy . (A-4)

To simplify Equation (A-4), note that the vector yC has all zeros in it except for the 0th

component. In order to show this, recall that yC = −UxC and so from Equation (A-3) we
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have

yC = −xC + 2
(
wTxC

)
w = −xC +

2
[
||xC ||2 + ||xC || [xC ]0

]
||xC + ||xC || e0||

w ,

= −xC +
2
[
||xC ||2 + ||xC || [xC ]0

]
||xC + ||xC || e0||2

[xC + ||xC || e0] ,

= −xC +
2
[
||xC ||2 + ||xC || [xC ]0

]
2
[
||xC ||2 + ||xC || [xC ]0

] [xC + ||xC || e0] = −xC + xC + ||xC || e0 .

Thus, we have yC = ||xC || e0, and so indeed the only nonzero component of yC is its 0th

component. Substituting this into Equation (A-4) and defining yk , [y]k for all

0 ≤ k ≤ G− 1 for notational convenience leads to

I =

∫
y∈RG:||y||2<r2

1

(2π)
G
2

e−
1
2 ||y−||xC ||e0||2 dy ,

=

∫
y∈RG:||y||2<r2

1

(2π)
G
2

e−
1
2 (||y||2−2||xC ||y0+||xC ||2) dy . (A-5)

To evaluate Equation (A-5), consider the following hyperspherical coordinate system [8]

transformation:

y0 = ρ cos(φ0) ,

y1 = ρ sin(φ0) cos(φ1) ,

y2 = ρ sin(φ0) sin(φ1) cos(φ2) ,

...

yG−2 = ρ sin(φ0) sin(φ1) · · · sin(φG−3) cos(φG−2) ,

yG−1 = ρ sin(φ0) sin(φ1) · · · sin(φG−3) sin(φG−2) .

Here, ρ denotes the radial coordinate, while φ0, φ1, . . . , φG−2 represent the angular

coordinates. In a more compact form, we have

yk =


ρ

[
k−1∏
`=0

sin(φ`)

]
cos(φk) , 0 ≤ k ≤ G− 2

ρ

[
k−1∏
`=0

sin(φ`)

]
, k = G− 1

, (A-6)

where all empty products are assumed to be equal to unity here. With the transformation

given in Equation (A-6), it can be shown that the differential dy satisfies [8]

dy = ρG−1 sinG−2(φ0) sinG−3(φ1) · · · sin2(φG−4) sin(φG−3) dρ dφ0 dφ1 · · · dφG−2 ,

which can be expressed more compactly as

dy = ρG−1

[
G−2∏
`=0

sinG−2−`(φ`)

]
dρ

(
G−2∏
`=0

dφ`

)
. (A-7)
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Using Equations (A-6) and (A-7) in Equation (A-5) and noting that ||y||2 < r2 corresponds

to the region 0 ≤ ρ < r, 0 ≤ φ0 < π, 0 ≤ φ1 < π, . . . , 0 ≤ φG−3 < π, 0 ≤ φG−2 < 2π leads to

I =

∫ r

ρ=0

∫ π

φ0=0

∫ π

φ1=0

· · ·
∫ π

φG−3=0

∫ 2π

φG−2=0

1

(2π)
G
2

e−
1
2 (ρ2−2||xC ||ρ cos(φ0)+||xC ||2)

× ρG−1

[
G−2∏
`=0

sinG−2−`(φ`)

]
dρ

(
G−2∏
`=0

dφ`

)
.

This can be simplified to

I =

∫ r

ρ=0

ρG−1

(2π)
G
2

e−
1
2 (ρ2+||xC ||2)

∫ π

φ0=0

e||xC ||ρ cos(φ0) sinG−2(φ0)

×

[
G−3∏
`=1

∫ π

0

sinG−2−`(φ`) dφ`

](∫ 2π

0

1 dφG−2

)
dφ0 dρ ,

which in turn can be simplified to the following:

I = 2π

(
G−3∏
`=1

∫ π

0

sin` x dx

)[∫ r

0

ρG−1

(2π)
G
2

e−
1
2 (ρ2+||xC ||2)

(∫ π

0

e||xC ||ρ cosφ sinG−2φdφ

)
dρ

]
.

(A-8)

In order to continue further with the simplification of I, we will first use the following

result from [7, pg. 397]:∫ π

0

sinν−1x cos (ax) dx =
π cos

(
aπ
2

)
2ν−1νB

(
ν+a+1

2 , ν−a+1
2

) , Re [ν] > 0 ,

where B(x, y) is the beta function [7]. Setting ν = `+ 1 and a = 0 yields∫ π

0

sin` x dx =
π

2` (`+ 1)B
(
`
2 + 1, `2 + 1

) . (A-9)

But from [7, pg. 909], we have B(x, y) = Γ(x)Γ(y)
Γ(x+y) , where Γ(x) is the gamma function [7],

and so B(x, x) = (Γ(x))2

Γ(2x) . By the doubling formula for the gamma function [7, pg. 896], we

have Γ(2x) = 22x−1
√
π

Γ(x) Γ
(
x+ 1

2

)
, and thus B(x, x) =

√
π Γ(x)

22x−1Γ(x+ 1
2 )

. Substituting this into

Equation (A-9) leads to ∫ π

0

sin` x dx =

√
π Γ
(
`+1

2 + 1
)(

`+1
2

)
Γ
(
`
2 + 1

) .
Now, as Γ(x+ 1) = xΓ(x) [7, pg. 895], we have∫ π

0

sin` x dx =
√
π

Γ
(
`−1

2 + 1
)

Γ
(
`
2 + 1

) , (A-10)

and hence
G−3∏
`=1

∫ π

0

sin` x dx = π(G2 − 3
2 ) · Γ(1)

Γ
(
G
2 −

1
2

) =
π(G2 − 3

2 )

Γ
(
G
2 −

1
2

) . (A-11)

Here, Equation (A-11) follows from the fact that the gamma function terms in Equation

(A-10) form a telescoping product [7] and the fact that Γ(1) = 1 [7, pg. 897].

39



Returning to Equation (A-8), it follows that substituting Equation (A-11) yields the

following:

I =
2π(G2 − 1

2 )

Γ
(
G
2 −

1
2

) ∫ r

0

ρG−1

(2π)
G
2

e−
1
2 (ρ2+||xC ||2)

(∫ π

0

e||xC ||ρ cosφ sinG−2φdφ

)
dρ . (A-12)

To simplify the inner integral, note that from [7, pg. 491] that we have∫ π

0

e±β cos x sin2νx dx =
√
π

(
2

β

)ν
Γ

(
ν +

1

2

)
Iν(β) , Re [ν] > −1

2
,

where Iν(x) is the modified Bessel function of the first kind of order ν [7]. Setting

β = ||xC || ρ and ν = G
2 − 1 yields

∫ π

0

e||xC ||ρ cosφ sinG−2φdφ =
√
π

(
2

||xC || ρ

)G
2 −1

Γ

(
G

2
− 1

2

)
IG

2 −1(||xC || ρ) .

Substituting this result into Equation (A-12) leads to

I = ||xC ||−
G
2 +1

∫ r

0

ρ
G
2 e−

1
2 (ρ2+||xC ||2)IG

2 −1(||xC || ρ) dρ . (A-13)

Let u , ρ2, so that ρ =
√
u and thus dρ = 1

2u
− 1

2 du. Then, with this change of variables

applied to Equation (A-13), we get

I =

∫ r2

0

1

2
e−

1
2 (u+||xC ||2)

(
u

||xC ||2

)G
4 − 1

2

IG
2 −1

(√
||xC ||2 u

)
︸ ︷︷ ︸

fNCχ2(u;G,||xC ||2)

du ,

where fNCχ2

(
u;G, ||xC ||2

)
is the pdf of a noncentral chi-square distribution evaluated at

u with G degrees of freedom and non-centrality parameter ||xC ||2 [4]. As the cdf of any

distribution is simply the integral of the associated pdf from −∞ to the point of interest

[2], and since the region of support of a noncentral chi-square random variable is [0,∞) [4],

we have

I = zNCχ2

(
r2;G, ||xC ||2

)
, (A-14)

and so Equations (A-14) and (A-4) imply Equation (A-1). This completes the proof.
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